

Reading and Interpreting Battery Float Currents for IEEE PES ESSB Summer 2023 mtg

ESSB

Pros and Cons of Reading Battery Float Current

- Pros
 - 1 of the Best Ways to Detect Battery Aging and Thermal Runaway
 - Latter can Also be Detected by Battery-Ambient Differential °
 - only requires One Monitoring Point / Measurement per String
 - Temperature Requires Comparing All Cells/Jars to Ambient
 - Although Thermal Runaway Can be Caught Early Enough with Just
 One Measurement / Monitoring Point per String
- Cons
 - Small DC Currents are Difficult to Measure Accurately
 - Clamp-on Ammeters / Split-Core CTs that will do it are Rare
 - need to Wait at Least 1 Day After Discharge to Measure Float Current
 - Allows Recharge Time

Hints on Proper Use of a DC Clamp-On Ammeter

- Note the Direction of the Meter
 - 1 Side of the Jaws will have an Arrow and/or a "+" marking
 - The Arrow should Flow from Positive to Negative
 - + mark electrically Faces the more Positive end of the string
- Zero the Meter Right Next to the Conductor to be Measured
- Center the Cable(s)/Conductor(s) in the Jaws (if possible)
 - Closing the Jaws Completely
- Jaw Size and Accuracy
 - the Bigger the Jaw, the Less Accurate are Small DC Amp Measurements
 - Small Jaw sizes Won't Fit Bigger Conductors carrying tiny float currents
 - when Battery Conductors have Multiple Cables / Intercell Connectors per Polarity, Measure and Add All of them in that single path

Typical Float Currents (@ 25°C/77°F)

Battery Type	typical μΑ/Ah (new)	typical μΑ/Ah (old)	typical μΑ/ W/cell (new)	typical μΑ/ W/cell (old)	
vented lead-calcium long duration	55 - 130		110 - 245		
vented lead-selenium	130 - 200	260 - 435	45 - 70	85 - 140	
vented lead-antimony	220 - 225	900 - 920	21/2		
VRLA gel	305 - 610		N/A		
VRLA 2V AGM	400 - 1,200		180 - 600		
VRLA monobloc AGM			120 - 400		

Antimony effect on float current

Some Meters That Will Measure Float Current

	Meter		DC	DC Max Amps		Approx.	Jaw & Cable	
	Mfr	Model	Accuracy	DC	AC (true rms)	Cost	Size	
	GTC	CM100		100	600	\$150		
	Uni-T	UT210E	1 mA	100		\$110	² / ₃ " (2/0 AWG)	
	Amprobe	LH-41A	TIIIA		40		%" (4/0 AWG)	
Econt 1	Extech	380942		40	30	\$300	/8 (4 /0 A VV 0)	
	Yokogawa	CL220			300	\$250	1" (350 kcmil)	
	Extech	MA445				\$100		
	Fluke	325	10 mA		400	\$200	1⅓" (500 kcmil)	
	Wlate	CL380				\$90		
	Klein	CL800			1000	\$210	1%" (750 kcmil)	

Some Commercial Products for Permanent Monitors that Will Measure Float Current

- Multitel FCCP **#Multitel**
 - Measures 0.001 5.300 A with Hall Effect CT
 - up to 2,000 A Current Flow w/o Damage
 - Needs Powering w/ 24 or 48 VDC
 - Approximately \$1,000?
- C&C Batt-Safe II Monitor
- C&C POWER
- Float and Charge/Discharge Hall Effect Probes in Same Package
- Monitors Other Stuff and Has Controls Too
- Powered by 120 VAC (from UPS or Inverter?)
- Approximately \$2,000?

More Commercial Products for Permanent Monitors that Will Measure Float Current

- LaMarche FCM (2) LaMARCHE
 - Measures 0.005 300 A Through a Shunt
 - Needs Powering w/ 12 VDC
- Ohio Semitronics (OSI) LDCL Transducers
 - Units Can Measure a Max of 15-50 A (Depending on Which Hall Effect CT Chosen
 - Accuracy down to tens of milliAmps
 - Different CTs can Be Powered w/ Nominal 12 or 24 VDC

Full Blown Battery Monitors That Will Also Monitor Float Current

Phoenix Broadband (PBT) – Owned by SENS

Albér (Vertiv)

EmSys CellSpy

B-Tech

EagleEye

BatteryDAQ

CellWatch (NDSL) Frontier

Chargers / Rectifier Systems that can Monitor Float Current

some Hindle

some LaMarche

When to Worry About Float Current Values

Battery	Worry	Increase over
Туре	Level	Baseline (@ similar °)
Lead-Calcium	Minor	2x
or Pure Lead	Major	3x
To a dition of Austine and	Minor	6x
Traditional Antimony	Major	10x
Low Antimony	Minor	3x
(e.g., Lead-Selenium)	Major	5x